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Palladium-catalyzed allylic alkylation is undoubtedly one of the
most extensively investigated reactions under transition-metal
catalysis.1 The key elemental step of this process is a nucleophilic
attack to aπ-allylpalladium intermediate at one of the two terminal
carbons of the allylic moiety (Figure 1, left). In contrast, although
it is known that a nucleophile can also attack the central carbon to
form a cyclopropane ring in the context of stoichiometric reactions
(Figure 1, right),2 catalytic cyclopropanation through this mode of
reaction pathway has been scarcely explored. In fact, only a few
reports have succeeded in the selective formation of cyclopropanes
in a catalytic manner.3-5 In this Communication, we describe the
development of an efficient synthesis of spiro[2.4]heptanes by
palladium-catalyzed intermolecular cycloaddition, which involves
a nucleophilic ring closure to the central carbon of aπ-allylpalla-
dium intermediate.3d

Recently, we devisedγ-methylidene-δ-valerolactones (e.g.,1a)
as new reagents for palladium-catalyzed [4+ 3] cycloaddition
reactions with nitrones, demonstrating that these reagents effectively
act as a four-carbon unit in an intermolecular cycloaddition
reaction.6 To expand their utility, we attempted a [4+ 2]
cycloaddition reaction of1awith methyl acrylate (2a), an electron-
deficient olefin, in the presence of 5 mol % of Pd/2PPh3 catalyst
at 40°C (Table 1, entry 1). Under these conditions, the expected
[4 + 2] cycloadduct (3aa) was obtained only in 29% yield and the
major product turned out to be spiro[2.4]heptane4aa (64% yield).
We subsequently determined that the selectivity of4aa over 3aa
could be somewhat improved by the use of a bisphosphine ligand
such as binap7 or dppf8 (3aa/4aa ) 20/80 to 17/83; entries 2 and
3), and the employment of a trialkylphosphite such as P(OMe)3 or
P(Oi-Pr)3 as the ligand further enhanced the selectivity toward the
formation of4aa (g95% selectivity; entries 4 and 5).

Under the conditions with P(Oi-Pr)3 as the ligand, several
γ-methylidene-δ-valerolactones can be used for the synthesis of
spiro[2.4]heptanes4 with methyl acrylate in high yield (87-97%
yield; Table 2, entries 2-5).9 With respect to the electron-deficient
olefin, other acrylates as well as acrylonitrile are also suitable
coupling partners, selectively giving cyclopropanation products4
(77-92% yield; entries 6-8). In addition, other electron-deficient
olefins such as 2-cyclopenten-1-one and 2(5H)-furanone undergo
the present cycloaddition with1aas well to give the corresponding
tricyclic spiro[2.4]heptanes in high yield (89-94% yield; entries 9
and 10).10

A proposed catalytic cycle of this process is illustrated in Figure
2. Thus, oxidative addition of the allyl ester moiety of1 to
palladium(0), followed by decarboxylation,11,12 gives 1,4-zwitteri-
onic speciesA. The anionic carbon ofA then attacks the
electrophilic carbon of electron-deficient olefin2 to give intermedi-
ateB, which undergoes a ring closure through a nucleophilic attack
to the central carbon of theπ-allylpalladium moiety to give
palladacyclobutaneC.2e Reductive elimination of product4 then
regenerates a palladium(0) species.2,3

Figure 1. Allylic substitution versus cyclopropanation in the nucleophilic
attack to aπ-allylpalladium complex.

Table 1. Palladium-Catalyzed Cycloaddition of 1a with Methyl
Acrylate (2a): Ligand Effect

entry ligand
% yield of
3aaa (dr)b

% yield of
4aaa (dr)b

1 PPh3 29 (83/17) 64 (75/25)
2c binap 14 (81/19) 55 (78/22)
3c dppf 16 (81/19) 77 (77/23)
4 P(OMe)3 4 (-d) 93 (65/35)
5 P(Oi-Pr)3 5 (-d) 86 (79/21)

a Combined yield of two diastereomers.b Determined by1H NMR. c 5 mol
% of ligand was used.d The ratio was not determined.

Table 2. Palladium-Catalyzed Synthesis of Spiro[2.4]heptanes:
Scopea

entry 1 2 product % yieldb (dr)c

1 1a 2a 4aa 86 (79/21)
2 1b 2a 4ba 91 (74/26)
3 1c 2a 4ca 91 (77/23)
4 1d 2a 4da 87 (72/28)
5 1e 2a 4ea 97 (70/30)
6 1a 2b 4ab 92 (79/21)
7 1a 2c 4ac 77 (90/10)
8 1a 2d 4ad 88 (76/24)
9 1a 2e 89 (65/35)

10 1a 2f 94 (57/43)

a The [4 + 2] cycloadducts3 were obtained in up to 8% yield for all the
entries.b Combined yield of two diastereomers.c Determined by1H NMR.
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When [4+ 2] cycloadducts3, rather than spiro[2.4]heptanes4,
are the desired products, these can be selectively obtained by
employing a bulky tertiary phosphine ligand. For example, the use
of (t-Bu)2P(o-PhC6H4)13 in the reaction of1awith 2aat 60°C gives
3aaas the major product (3aa/4aa) 80/20) in 70% combined yield
(eq 1), and high yield of3aa (83% yield) is achieved by using
P(o-Tol)3 as the ligand with minimal amount of4aa (4% yield).14

Although it is not entirely clear at this stage, the fact that the
use of relatively small phosphine and phosphite ligands as well as
bisphosphine ligands tends to give spiro[2.4]heptanes4 (Table 1)
and the use of bulky phosphine ligands preferentially gives [4+
2] cycloadducts3 (eq 1) may indicate that Pd(π-allyl)L2 species is
mainly responsible for the ring closure through the central attack
in the present catalysis (Figure 3a) and Pd(π-allyl)L1 species is
more responsible for the six-membered ring formation by the
terminal attack (Figure 3b).15,16

In summary, we have described the development of a palladium-
catalyzed intermolecular cycloaddition ofγ-methylidene-δ-vale-
rolactones with electron-deficient olefins to produce spiro[2.4]-
heptanes with high selectivity through a nucleophilic ring closure
to the central carbon of aπ-allylpalladium intermediate. We have
found that the course of the reaction is dependent on the ligand

employed, and selective [4+ 2] cycloadditions can also be achieved
by the use of a bulky monophosphine ligand. Future studies will
explore more details of the present catalysis including the mecha-
nistic studies as well as the development of an asymmetric variant.
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Figure 2. Proposed catalytic cycle for the palladium-catalyzed synthesis
of spiro[2.4]heptanes4 from 1 and2.

Figure 3. Proposed pathways for the production of (a) spiro[2.4]heptanes
4 and (b) [4+ 2] cycloadducts3.
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